Learn R Programming

fGarch (version 290.76)

sged: Skew GED Distribution and Parameter Estimation

Description

Functions to compute density, distribution function, quantile function and to generate random variates for the generalized error distribution. In addition maximum likelihood estimators are available to fit the parameters of the distribution. The functions are: ll{ [dpqr]ged Symmetric GED Distribution, [dpqr]sged Skew GED Distribution, gedFit MLE parameter fit for a GED distribution, sgedFit MLE parameter fit for a skew GED distribution, sgedSlider Displays interactively skew GED distribution. }

Usage

dged(x, mean = 0, sd = 1, nu = 2)
pged(q, mean = 0, sd = 1, nu = 2)
qged(p, mean = 0, sd = 1, nu = 2)
rged(n, mean = 0, sd = 1, nu = 2)

dsged(x, mean = 0, sd = 1, nu = 2, xi = 1.5) psged(q, mean = 0, sd = 1, nu = 2, xi = 1.5) qsged(p, mean = 0, sd = 1, nu = 2, xi = 1.5) rsged(n, mean = 0, sd = 1, nu = 2, xi = 1.5)

gedFit(x, ...) sgedFit(x, ...)

sgedSlider(type = c("dist", "rand"))

Arguments

mean, sd, nu, xi
location parameter mean, scale parameter sd, shape parameter nu, skewness parameter xi.
n
the number of observations.
p
a numeric vector of probabilities.
type
a character string denoting which interactive plot should be displayed. Either a distribution plot type="dist", the default value, or a random variates plot, type="rand".
x, q
a numeric vector of quantiles.
...
parameters parsed to the optimization function nlm.

Value

  • d* returns the density, p* returns the distribution function, q* returns the quantile function, and r* generates random deviates, all values are numeric vectors. [s]gedFit returns a list with the following components:
  • parThe best set of parameters found.
  • objectiveThe value of objective corresponding to par.
  • convergenceAn integer code. 0 indicates successful convergence.
  • messageA character string giving any additional information returned by the optimizer, or NULL. For details, see PORT documentation.
  • iterationsNumber of iterations performed.
  • evaluationsNumber of objective function and gradient function evaluations.

Details

Parameter Estimation: The function nlm is used to minimize the "negative" maximum log-likelihood function. nlm carries out a minimization using a Newton-type algorithm.

References

Nelson D.B. (1991); Conditional Heteroscedasticity in Asset Returns: A New Approach, Econometrica, 59, 347--370. Fernandez C., Steel M.F.J. (2000); On Bayesian Modelling of Fat Tails and Skewness, Preprint, 31 pages.

Examples

Run this code
## sged -
   par(mfrow = c(2, 2))
   set.seed(1953)
   r = rsged(n = 1000)
   plot(r, type = "l", main = "sged", col = "steelblue")
   
   # Plot empirical density and compare with true density:
   hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
   box()
   x = seq(min(r), max(r), length = 201)
   lines(x, dsged(x), lwd = 2)
   
   # Plot df and compare with true df:
   plot(sort(r), (1:1000/1000), main = "Probability", col = "steelblue",
     ylab = "Probability")
   lines(x, psged(x), lwd = 2)
   
   # Compute quantiles:
   round(qsged(psged(q = seq(-1, 5, by = 1))), digits = 6)
       
## sgedFit -
   sgedFit(r)

## sgedSlider -
   if (require(tcltk)) {
   sgedSlider("dist")
   sgedSlider("rand")
   }

Run the code above in your browser using DataLab