Summary methods for GARCH Modelling.
Generic function
Summary function for objects of class "fGARCH"
.
The first five sections return the title, the call, the mean and variance formula, the conditional distribution and the type of standard errors:
Title:
GARCH Modelling
Call:
garchFit(~ garch(1, 1), data = garchSim(), trace = FALSE)
Mean and Variance Equation:
~arch(0)
Conditional Distribution:
norm
Std. Errors:
based on Hessian
The next three sections return the estimated coefficients, and an error analysis including standard errors, t values, and probabilities, as well as the log Likelihood values from optimization:
Coefficient(s):
mu omega alpha1 beta1
-5.79788e-05 7.93017e-06 1.59456e-01 2.30772e-01
Error Analysis:
Estimate Std. Error t value Pr(>|t|)
mu -5.798e-05 2.582e-04 -0.225 0.822
omega 7.930e-06 5.309e-06 1.494 0.135
alpha1 1.595e-01 1.026e-01 1.554 0.120
beta1 2.308e-01 4.203e-01 0.549 0.583
Log Likelihood:
-843.3991 normalized: -Inf
The next section provides results on standardized residuals tests, including statistic and p values, and on information criterion statistic including AIC, BIC, SIC, and HQIC:
Standardized Residuals Tests:
Statistic p-Value
Jarque-Bera Test R Chi^2 0.4172129 0.8117146
Shapiro-Wilk Test R W 0.9957817 0.8566985
Ljung-Box Test R Q(10) 13.05581 0.2205680
Ljung-Box Test R Q(15) 14.40879 0.4947788
Ljung-Box Test R Q(20) 38.15456 0.008478302
Ljung-Box Test R^2 Q(10) 7.619134 0.6659837
Ljung-Box Test R^2 Q(15) 13.89721 0.5333388
Ljung-Box Test R^2 Q(20) 15.61716 0.7400728
LM Arch Test R TR^2 7.049963 0.8542942
Information Criterion Statistics:
AIC BIC SIC HQIC
8.473991 8.539957 8.473212 8.500687
Diethelm Wuertz for the Rmetrics R-port.
## garchSim -
x = garchSim(n = 200)
## garchFit -
fit = garchFit(formula = x ~ garch(1, 1), data = x, trace = FALSE)
summary(fit)
Run the code above in your browser using DataLab