## garchSpec -
# Normal Conditional Distribution:
spec = garchSpec()
spec
# Skewed Normal Conditional Distribution:
spec = garchSpec(model = list(skew = 0.8), cond.dist = "snorm")
spec
# Skewed GED Conditional Distribution:
spec = garchSpec(model = list(skew = 0.9, shape = 4.8), cond.dist = "sged")
spec
## More specifications ...
# Default GARCH(1,1) - uses default parameter settings
garchSpec(model = list())
# ARCH(2) - use default omega and specify alpha, set beta=0!
garchSpec(model = list(alpha = c(0.2, 0.4), beta = 0))
# AR(1)-ARCH(2) - use default mu, omega
garchSpec(model = list(ar = 0.5, alpha = c(0.3, 0.4), beta = 0))
# AR([1,5])-GARCH(1,1) - use default garch values and subset ar[.]
garchSpec(model = list(mu = 0.001, ar = c(0.5,0,0,0,0.1)))
# ARMA(1,2)-GARCH(1,1) - use default garch values
garchSpec(model = list(ar = 0.5, ma = c(0.3, -0.3)))
# GARCH(1,1) - use default omega and specify alpha/beta
garchSpec(model = list(alpha = 0.2, beta = 0.7))
# GARCH(1,1) - specify omega/alpha/beta
garchSpec(model = list(omega = 1e-6, alpha = 0.1, beta = 0.8))
# GARCH(1,2) - use default omega and specify alpha[1]/beta[2]
garchSpec(model = list(alpha = 0.1, beta = c(0.4, 0.4)))
# GARCH(2,1) - use default omega and specify alpha[2]/beta[1]
garchSpec(model = list(alpha = c(0.12, 0.04), beta = 0.08))
# snorm-ARCH(1) - use defaults with skew Normal
garchSpec(model = list(beta = 0, skew = 0.8), cond.dist = "snorm")
# sged-GARCH(1,1) - using defaults with skew GED
garchSpec(model = list(skew = 0.93, shape = 3), cond.dist = "sged")
# Taylor Schwert GARCH(1,1) - this belongs to the family of APARCH Models
garchSpec(model = list(delta = 1))
# AR(1)-t-APARCH(2, 1) - a little bit more complex specification ...
garchSpec(model = list(mu = 1.0e-4, ar = 0.5, omega = 1.0e-6,
alpha = c(0.10, 0.05), gamma = c(0, 0), beta = 0.8, delta = 1.8,
shape = 4, skew = 0.85), cond.dist = "sstd")
Run the code above in your browser using DataLab