This helper function generates a set of initial values for the numerical optimization of the model likelihood function.
get_initial_values(
data,
ncluster = 1,
seed = NULL,
verbose = TRUE,
initial_estimate = NULL
)
A list
, where each element is an object of class parUncon
.
An object of class fHMM_data
.
Set the number of clusters for parallel optimization runs to reduce
optimization time.
By default, ncluster = 1
(no clustering).
Set a seed for the generation of initial values. No seed by default.
Set to TRUE
to print progress messages.
Optionally defines an initial estimate for the numerical likelihood optimization. Good initial estimates can improve the optimization process. Can be:
NULL
(the default), in this case
applies a heuristic to calculate a good initial estimate
or uses the true parameter values (if available and
data$controls$origin
is TRUE
)
or an object of class parUncon
(i.e., a numeric
of
unconstrained model parameters), for example the estimate of a
previously fitted model (i.e. the element model$estimate
).