These helper functions transform model parameters between
constrained spaces (suffix *Con
)
and unconstrained spaces (suffix *Uncon
).
The former is useful for interpretation, the latter for unconstrained optimization.
par2parUncon(par, controls, use_parameter_labels = TRUE)parUncon2parCon(
parUncon,
controls,
use_parameter_labels = TRUE,
numerical_safeguard = FALSE
)
parCon2par(parCon, controls, use_parameter_labels = TRUE)
par2parCon(par, controls, use_parameter_labels = TRUE)
parCon2parUncon(parCon, controls, use_parameter_labels = TRUE)
parUncon2par(
parUncon,
controls,
use_parameter_labels = TRUE,
numerical_safeguard = FALSE
)
muCon2muUncon(muCon, link, prefix = "muUncon_", use_parameter_labels = TRUE)
muUncon2muCon(muUncon, link, prefix = "muCon_", use_parameter_labels = TRUE)
sigmaCon2sigmaUncon(
sigmaCon,
prefix = "sigmaUncon_",
use_parameter_labels = TRUE
)
sigmaUncon2sigmaCon(
sigmaUncon,
prefix = "sigmaCon_",
use_parameter_labels = TRUE,
numerical_safeguard = FALSE
)
dfCon2dfUncon(dfCon, prefix = "dfUncon_", use_parameter_labels = TRUE)
dfUncon2dfCon(
dfUncon,
prefix = "dfCon_",
use_parameter_labels = TRUE,
numerical_safeguard = FALSE
)
Gamma2gammasCon(
Gamma,
prefix = "gammasCon_",
use_parameter_labels = TRUE,
numerical_safeguard = FALSE
)
Gamma2gammasUncon(Gamma, prefix = "gammasUncon_", use_parameter_labels = TRUE)
gammasCon2Gamma(gammasCon, dim, prefix = "state_", use_parameter_labels = TRUE)
gammasCon2gammasUncon(
gammasCon,
dim,
prefix = "gammasUncon_",
use_parameter_labels = TRUE
)
gammasUncon2Gamma(
gammasUncon,
dim,
prefix = "state_",
use_parameter_labels = TRUE,
numerical_safeguard = FALSE
)
gammasUncon2gammasCon(
gammasUncon,
dim,
prefix = "gammasCon_",
use_parameter_labels = TRUE,
numerical_safeguard = FALSE
)
For par2parUncon
: a vector of unconstrained model parameters.
For parUncon2parCon
: a vector of constrained model parameters.
For parCon2par
: an object of class fHMM_parameters
.
For par2parCon
: a vector of constrained model parameters.
For parCon2parUncon
: a vector of unconstrained model parameters.
For parUncon2par
: an object of class fHMM_parameters
.
For muCon2muUncon
: a vector of unconstrained expected values.
For muUncon2muCon
: a vector of constrained expected values.
For sigmaCon2sigmaUncon
: a vector of unconstrained standard
deviations.
For sigmaUncon2sigmaCon
: a vector of constrained standard deviations.
For dfCon2dfUncon
: a vector of unconstrained degrees of freedom.
For dfUncon2dfCon
: a vector of constrained degrees of freedom.
For Gamma2gammasCon
: a vector of constrained non-diagonal matrix
elements (column-wise).
For Gamma2gammasUncon
: a vector of unconstrained non-diagonal matrix
elements (column-wise).
For gammasCon2Gamma
: a transition probability matrix.
For gammasCon2gammasUncon
: a vector of unconstrained non-diagonal
elements of the transition probability matrix.
For gammasUncon2Gamma
: a transition probability matrix.
For gammasUncon2gammasCon
: a vector of constrained non-diagonal
elements of a transition probability matrix.
An object of class fHMM_parameters
, which is a list
of model parameters.
Either a list
or an object of class fHMM_controls
.
The list
can contain the following elements, which are described
in more detail below:
hierarchy
, defines an hierarchical HMM,
states
, defines the number of states,
sdds
, defines the state-dependent distributions,
horizon
, defines the time horizon,
period
, defines a flexible, periodic fine-scale time horizon,
data
, a list
of controls that define the data,
fit
, a list
of controls that define the model fitting
Either none, all, or selected elements can be specified.
Unspecified parameters are set to their default values.
Important: Specifications in controls
always override individual
specifications.
Either TRUE
to label the parameters or FALSE
, if not (this can
save computation time).
An object of class parUncon
, which is a numeric
vector
with identified and unconstrained model parameters in the following order:
non-diagonal transition probabilities gammasUncon
expectations muUncon
standard deviations sigmaUncon
(if any)
degrees of freedom dfUncon
(if any)
fine-scale parameters for each coarse-scale state, in the same order (if any)
Either TRUE
or FALSE
, determining whether to apply the
following small corrections to boundary parameters to improve numerical
performance when calculating and optimizing the likelihood function:
transition probabilities equal to 0 or 1 are shifted towards the center
by 1e-3
standard deviations and degrees of freedom are bounded above by 100
An object of class parCon
, which is a numeric
vector
with identified (and constrained) model parameters in the following order:
non-diagonal transition probabilities gammasCon
expectations muCon
standard deviations sigmaCon
(if any)
degrees of freedom dfCon
(if any)
fine-scale parameters for each coarse-scale state, in the same order (if any)
A vector of (un-) constrained expected values.
Either TRUE
or FALSE
, determining whether to apply the link
function.
A character
prefix for labeling the parameters.
A vector of (un-) constrained standard deviations.
A vector of (un-) constrained degrees of freedom.
A vector of (un-) constrained non-diagonal transition probabilities.
An integer
, the dimension of the transition probability matrix.