covEstimator(x, spec = NULL, ...)
mveEstimator(x, spec = NULL, ...)
mcdEstimator(x, spec = NULL, ...)lpmEstimator(x, spec = NULL, ...)
kendallEstimator(x, spec = NULL, ...)
spearmanEstimator(x, spec = NULL, ...)
covMcdEstimator(x, spec = NULL, ...)
covOGKEstimator(x, spec = NULL, ...)
shrinkEstimator(x, spec = NULL, ...)
nnveEstimator(x, spec = NULL, ...)
as.matrix() into a matrix object, e.g. like an
object of class timeSeries, data.frame, or mts.mu and
Sigma.
The first denotes the vector of column means, and the second the
covariance matrix. Note, that the output of this function can be
used as data input for the portfolio functions to compute the
efficient frontier.covEstimator uses standard covariance estimation,
mveEstimator uses the function "cov.mve" from the MASS package,
mcdEstimator uses the function "cov.mcd" from the MASS package,
lpmEstimator returns lower partial moment estimator,
kendallEstimator returns Kendall's rank estimator,
spearmanEstimator returns Spearman's rankestimator,
covMcdEstimator requires "covMcd" from package robustbase,
covOGKEstimator requires "covOGK" from package robustbase,
nnveEstimator uses builtin from package covRobust,
shrinkEstimator uses builtin from package corpcor.Ledoit O., Wolf. M. (2003); ImprovedEestimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection, Journal of Empirical Finance 10, 503--621.
Schaefer J., Strimmer K. (2005); A Shrinkage Approach to Large-Scale Covariance Estimation and Implications for Functional Genomics, Statist. Appl. Genet. Mol. Biol. 4, 32.
MultivariateDistribution.## berndtInvest -
LPP = as.timeSeries(data(LPP2005REC))[, 1:6]
colnames(LPP)
## Classical Covariance Estimation:
covEstimator(LPP)Run the code above in your browser using DataLab