Learn R Programming

face (version 0.1-7)

predict.face.sparse: Subject-specific curve prediction from a face.sparse fit

Description

Predict subject-specific curves based on a fit from "face.sparse".

Usage

# S3 method for face.sparse
predict(object, newdata,...)

Value

object

A "face.sparse" fit

newdata

Input

y.pred,mu.pred,Chat.pred, Chat.diag.pred, var.error.pred

Predicted/estimated objects at the observation time points in newdata

rand_eff

if calculate.scores in object is TRUE (typically FALSE), then predicted scores rand_eff$scores will be calculated.

...

...

Arguments

object

a fitted object from the R function "face.sparse".

newdata

a data frame with three arguments: (1) argvals: observation times; (2) subj: subject indices; (3) y: values of observations. NA values are allowed in "y" but not in the other two.

...

further arguments passed to or from other methods.

Author

Luo Xiao <lxiao5@ncsu.edu>

Details

This function makes prediction based on observed data for each subject. So for each subject, it requires at least one observed data. For the time points prediction is desired but no observation is available, just make the corresponding data$y as NA.

References

Luo Xiao, Cai Li, William Checkley and Ciprian Crainiceanu, Fast covariance estimation for sparse functional data, Stat. Comput., tools:::Rd_expr_doi("10.1007/s11222-017-9744-8").

Examples

Run this code

#See the examples for "face.sparse".

Run the code above in your browser using DataLab