# Principal component analysis
# ++++++++++++++++++++++++++
data(decathlon2)
decathlon2.active <- decathlon2[1:23, 1:10]
res.pca <- prcomp(decathlon2.active, scale = TRUE)
# variable contributions on axis 1
fviz_contrib(res.pca, choice="var", axes = 1 )
# sorting
fviz_contrib(res.pca, choice="var", axes = 1,
sort.val ="asc")
# select the top 7 contributing variables
fviz_contrib(res.pca, choice="var", axes = 1, top = 7 )
# Change theme and color
fviz_contrib(res.pca, choice="var", axes = 1,
fill = "lightgray", color = "black") +
theme_minimal() +
theme(axis.text.x = element_text(angle=45))
# Variable contributions on axis 2
fviz_contrib(res.pca, choice="var", axes = 2)
# Variable contributions on axes 1 + 2
fviz_contrib(res.pca, choice="var", axes = 1:2)
# Contributions of individuals on axis 1
fviz_contrib(res.pca, choice="ind", axes = 1)
# Correspondence Analysis
# ++++++++++++++++++++++++++
# Install and load FactoMineR to compute CA
# install.packages("FactoMineR")
library("FactoMineR")
data("housetasks")
res.ca <- CA(housetasks, graph = FALSE)
# Visualize row contributions on axes 1
fviz_contrib(res.ca, choice ="row", axes = 1)
# Visualize row contributions on axes 1 + 2
fviz_contrib(res.ca, choice ="row", axes = 1:2)
# Visualize column contributions on axes 1
fviz_contrib(res.ca, choice ="col", axes = 1)
# Multiple Correspondence Analysis
# +++++++++++++++++++++++++++++++++
library(FactoMineR)
data(poison)
res.mca <- MCA(poison, quanti.sup = 1:2,
quali.sup = 3:4, graph=FALSE)
# Visualize individual contributions on axes 1
fviz_contrib(res.mca, choice ="ind", axes = 1)
# Select the top 20
fviz_contrib(res.mca, choice ="ind", axes = 1, top = 20)
# Visualize variable categorie contributions on axes 1
fviz_contrib(res.mca, choice ="var", axes = 1)
# Multiple Factor Analysis
# ++++++++++++++++++++++++
library(FactoMineR)
data(poison)
res.mfa <- MFA(poison, group=c(2,2,5,6), type=c("s","n","n","n"),
name.group=c("desc","desc2","symptom","eat"),
num.group.sup=1:2, graph=FALSE)
# Visualize individual contributions on axes 1
fviz_contrib(res.mfa, choice ="ind", axes = 1)
# Select the top 20
fviz_contrib(res.mfa, choice ="ind", axes = 1, top = 20)
# Visualize catecorical variable categorie contributions on axes 1
fviz_contrib(res.mfa, choice ="quali.var", axes = 1)
Run the code above in your browser using DataLab