# Load and scale the data
data(USArrests)
df <- scale(USArrests)
# Hierarchical clustering
res.hc <- hclust(dist(df))
# Default plot
fviz_dend(res.hc)
# Cut the tree
fviz_dend(res.hc, cex = 0.5, k = 4, color_labels_by_k = TRUE)
# Don't color labels, add rectangles
fviz_dend(res.hc, cex = 0.5, k = 4,
color_labels_by_k = FALSE, rect = TRUE)
# Triangle
fviz_dend(res.hc, cex = 0.5, k = 4, type = "triangle")
# Change the color of tree using black color for all groups
# Change rectangle border colors
fviz_dend(res.hc, rect = TRUE, k_colors ="black",
rect_border = 2:5, rect_lty = 1)
# Customized color for groups
fviz_dend(res.hc, k = 4,
k_colors = c("#1B9E77", "#D95F02", "#7570B3", "#E7298A"))
# Color labels using k-means clusters
km.clust <- kmeans(df, 4)$cluster
fviz_dend(res.hc, k = 4,
k_colors = c("blue", "green3", "red", "black"),
label_cols = km.clust[res.hc$order], cex = 0.6)
Run the code above in your browser using DataLab