Learn R Programming

fairmodels (version 1.2.1)

stack_metrics: Stack metrics

Description

Stack metrics sums parity loss metrics for all models. Higher value of stacked metrics means the model is less fair (has higher bias) for subgroups from protected vector.

Usage

stack_metrics(x, fairness_metrics = c("ACC", "TPR", "PPV", "FPR", "STP"))

Value

stacked_metrics object. It contains data.frame with information about score for each metric and model.

Arguments

x

object of class fairness_object

fairness_metrics

character, vector of fairness parity_loss metric names to include in plot. Full names are provided in fairess_check documentation.

Examples

Run this code

data("german")

y_numeric <- as.numeric(german$Risk) - 1

lm_model <- glm(Risk ~ .,
  data = german,
  family = binomial(link = "logit")
)


explainer_lm <- DALEX::explain(lm_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_lm,
  protected = german$Sex,
  privileged = "male"
)

sm <- stack_metrics(fobject)
plot(sm)
# \donttest{

rf_model <- ranger::ranger(Risk ~ .,
  data = german,
  probability = TRUE,
  num.trees = 200
)

explainer_rf <- DALEX::explain(rf_model, data = german[, -1], y = y_numeric)

fobject <- fairness_check(explainer_rf, fobject)

sm <- stack_metrics(fobject)
plot(sm)
# }

Run the code above in your browser using DataLab