Estimates and plots the FANOVA graph of a function to identify its interaction structure and fits a kriging model modified by the identified structure
Important functions:
estimateGraph |
Estimate indices for the graph, create graph structure |
threshold |
Set indices below a threshold to zero |
plot.graphlist |
Plot a given graph structure |
plotDeltaJumps |
Provide plots for the choice of the threshold |
kmAdditive |
Kriging model estimation with block-additive kernel |
predictAdditive |
Prediction function from Kriging model with block-additive kernel |
Fruth, J.; Roustant, O.; Kuhnt, S. (2013+) Total interaction index: A variance-based sensitivity index for second-order interaction screening.
Janon, A.; Klein, T.; Lagnoux-Renaudie, A.; Nodet, M.; Prieur, C. (2012+) Asymptotic normality and efficiency of two Sobol index estimators.
Liu, R.; Owen, A.B. (2006) Estimating mean dimensionality of analysis of variance decompositions, Journal of the American Statistical Association, 101 474, 712-721.
Mara, T.A (2009) Extension of the RBD-FAST method to the computation of global sensitivity indices, Reliability Engineering & System Safety, 94 no. 8, 1274-1281.
Muehlenstaedt, T.; Roustant, O.; Carraro, L.; Kuhnt, S. (2011) Data-driven Kriging models based on FANOVA-decomposition, Statistics and Computing.
Sobol', I. M. (1993) Sensitivity estimates for nonlinear mathematical models, Mathematical Modeling and Computational Experiment, 1, 407-414.
# NOT RUN {
#demo(ExampleIshigami)
#demo(Example6D)
#demo(Estimation)
#demo(Threshold)
# }
Run the code above in your browser using DataLab