Learn R Programming

far (version 0.6-7)

base.simul.far: Creating functional basis

Description

Computation of a particular basis in a functional space.

Usage

base.simul.far(m=24, n=5)

Value

A matrix of size m x n containing the m values of the n first axis of the basis.

Arguments

m

Number of discretization points

n

Number of axis

Author

J. Damon

Details

We consider a sinusoidal basis of the functional space C[0;1] of the continuous functions from [0;1] to R. We compute here the values of the n first (functional) axis at m equi-repartited discretization points in [0;1] (more precisely the point 0,\(\frac{1}{\code{m}}\),..., \(\frac{\code{m}-1}{\code{m}}\)).

See Also

simul.farx

Examples

Run this code
  print(temp<-base.simul.far(10,3))
  print(t(temp)%*%temp)
  matplot(base.simul.far(100,5),type='l')

Run the code above in your browser using DataLab