Implements Freund and Schapire's Adaboost.M1 algorithm
Usage
adaboost(formula, data, nIter, ...)
Arguments
formula
Formula for models
data
Input dataframe
nIter
no. of classifiers
...
other optional arguments, not implemented now
Value
object of class adaboost
Details
This implements the Adaboost.M1 algorithm for a binary classification task.
The target variable must be a factor with exactly two levels.
The final classifier is a linear combination of weak decision tree classifiers.
References
Freund, Y. and Schapire, R.E. (1996):Experiments with a new boosting algorithm
. In Proceedings of the Thirteenth International Conference on Machine Learning,
pp. 148--156, Morgan Kaufmann.