Learn R Programming

fasterRaster (version 8.4.0.5)

madCoverCats: Table of land cover classes for an eastern portion of Madagascar

Description

This data frame corresponds to the madCover raster, which represents land cover for an eastern portion of Madagascar. Note that the land cover classes have been simplified, so this table and raster should not be used for "real" analyses.

Arguments

Format

An object of class data.frame.

References

Arino O., P. Bicheron, F. Achard, J. Latham, R. Witt and J.-L. Weber. 2008. GlobCover: The most detailed portrait of Earth. European Space Agency Bulletin 136:25-31. http://due.esrin.esa.int.

See Also

Examples

Run this code

### vector data

library(sf)

# For vector data, we can use data(*) or fastData(*):
data(madCoast0) # same as next line
madCoast0 <- fastData("madCoast0") # same as previous
madCoast0
plot(st_geometry(madCoast0))

madCoast4 <- fastData("madCoast4")
madCoast4
plot(st_geometry(madCoast4), add = TRUE)

madRivers <- fastData("madRivers")
madRivers
plot(st_geometry(madRivers), col = "blue", add = TRUE)

madDypsis <- fastData("madDypsis")
madDypsis
plot(st_geometry(madDypsis), col = "red", add = TRUE)

### raster data

library(terra)

# For raster data, we can get the file directly or using fastData(*):
rastFile <- system.file("extdata/madElev.tif", package="fasterRaster")
madElev <- terra::rast(rastFile)

madElev <- fastData("madElev") # same as previous two lines
madElev
plot(madElev)

madForest2000 <- fastData("madForest2000")
madForest2000
plot(madForest2000)

madForest2014 <- fastData("madForest2014")
madForest2014
plot(madForest2014)

# multi-layer rasters
madChelsa <- fastData("madChelsa")
madChelsa
plot(madChelsa)

madPpt <- fastData("madPpt")
madTmin <- fastData("madTmin")
madTmax <- fastData("madTmax")
madPpt
madTmin
madTmax


# RGB raster
madLANDSAT <- fastData("madLANDSAT")
madLANDSAT
plotRGB(madLANDSAT, 4, 1, 2, stretch = "lin")

# categorical raster
madCover <- fastData("madCover")
madCover
madCover <- droplevels(madCover)
levels(madCover) # levels in the raster
nlevels(madCover) # number of categories
catNames(madCover) # names of categories table

plot(madCover)

Run the code above in your browser using DataLab