Performs the Non-Euclidean Fuzzy Relational data Clustering algorithm.
The noise cluster is an additional cluster (with respect to the k standard clusters) such that objects recognized to be outliers are assigned to it with high membership degrees.
NEFRC.noise(D, k, m, delta, RS, startU, index, alpha, conv, maxit, seed)Object of class fclust, which is a list with the following components:
Membership degree matrix
Prototype matrix (NULL for NEFRC.noise)
Array containing the covariance matrices of all the clusters (NULL for NEFRC.noise)
Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2)
Vector containing the indexes of the medoid objects (NULL for NEFRC.noise)
Vector containing the loss function values for the RS starts
Vector containing the values of the cluster validity index
Vector containing the numbers of iterations for the RS starts
Number of clusters
Parameter of fuzziness
Degree of fuzzy entropy (NULL for NEFRC.noise)
Parameter of the polynomial fuzzifier (NULL for NEFRC.noise)
Volume parameter (NULL for NEFRC.noise)
Noise distance (NULL for NEFRC.noise).
Standardization (Yes if stand=1, No if stand=0) (NULL for NEFRC.noise).
Data used in the clustering algorithm (NULL for NEFRC.noise), D is used)
Raw data (NULL for NEFRC.noise)
Dissimilarity matrix
Matched call
Matrix or data.frame containing distances/dissimilarities
An integer value or vector specifying the number of clusters for which the index is to be calculated (default: 2:6)
Parameter of fuzziness (default: 2)
Noise distance (default: average observed distance)
Number of (random) starts (default: 1)
Rational start for the membership degree matrix U (default: no rational start)
Cluster validity index to select the number of clusters: "PC" (partition coefficient), "PE" (partition entropy), "MPC" (modified partition coefficient), "SIL" (silhouette), "SIL.F" (fuzzy silhouette) (default: "SIL.F")
Weighting coefficient for the fuzzy silhouette index SIL.F (default: 1)
Convergence criterion (default: 1e-9)
Maximum number of iterations (default: 1e+6)
Seed value for random number generation (default: NULL)
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
If startU is given, the argument k is ignored (the number of clusters is ncol(startU)).
If startU is given, the first element of value, cput and iter refer to the rational start.
Davé, R. N., & Sen, S. 2002. Robust fuzzy clustering of relational data. IEEE Transactions on Fuzzy Systems, 10(6), 713-727.
NEFRC, print.fclust, summary.fclust, plot.fclust
if (FALSE) {
require(cluster)
data("houseVotes")
X <- houseVotes[,-1]
D <- daisy(x = X, metric = "gower")
clust.NEFRC.noise <- NEFRC.noise(D = D, k = 2:6, m = 2, index = "SIL.F")
summary(clust.NEFRC.noise)
plot(clust.NEFRC.noise)
}
Run the code above in your browser using DataLab