Learn R Programming

fclust (version 2.1.1.1)

XB: Xie and Beni index

Description

Produces the Xie and Beni index. The optimal number of clusters k is is such that the index takes the minimum value.

Usage

XB (Xca, U, H, m)

Value

xb

Value of the Xie and Beni index

Arguments

Xca

Matrix or data.frame

U

Membership degree matrix

H

Prototype matrix

m

Parameter of fuzziness (default: 2)

Author

Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini

Details

Xca should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then XB should be computed using the same standardized data.
m should be the same parameter of fuzziness used in the clustering algorithm.

References

Xie X.L., Beni G. (1991). A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 841-847.

See Also

PC, PE, MPC, SIL, SIL.F, Fclust, Mc

Examples

Run this code
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## Xie and Beni index
xb=XB(clust$Xca,clust$U,clust$H,clust$m)

Run the code above in your browser using DataLab