Computes Functional Classification using k-fold cross-validation
classif.kfold(
formula,
data,
classif = "classif.glm",
par.classif,
kfold = 10,
param.kfold = NULL,
measure = "accuracy",
cost,
models = FALSE,
verbose = FALSE
)Best fitted model computed by the k-fold CV using the method indicated
in the classif argument and also returns:
param.min, value of parameter (or parameters) selected by k-fold CV.
params.error, k-fold CV error for each parameter combination.
pred.kfold, predicted response computed by k-fold CV.
model, if TRUE, list of models for each parameter combination.
an object of class formula (or one that can be coerced to that class):
a symbolic description of the model to be fitted. The procedure only considers functional covariates (not implemented for non-functional covariates).
list, it contains the variables in the model.
character, name of classification method to be used in fitting the model, see Details section.
list of arguments used in the classification method.
integer, number of k-fold.
list, arguments related to number of k-folds for each covariate, see Details section.
character, type of measure of accuracy used, see cat2meas function.
numeric, see cat2meas function.
logical. If TRUE, return a list of the fitted models used, (k-fold -1) X (number of parameters)
logical. If TRUE, print some internal results.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Parameters for k-fold cross validation:
Number of basis elements:
Data-driven basis such as Functional Principal Componetns (PC). No implemented for PLS basis yet.
Fixed basis (bspline, fourier, etc.).
Option used in some classifiers such as classif.glm, classif.gsam, classif.svm, etc.
Bandwidth parameter. Option used in non-parametric classificiation models such as classif.np and classif.gkam.
if (FALSE) {
data(tecator)
cutpoint <- 18
tecator$y$class <- factor(ifelse(tecator$y$FatRun the code above in your browser using DataLab