Distance correlation t-test of multivariate and functional independence (wrapper functions of energy package).
dcor.xy(x, y, test = TRUE, metric.x, metric.y, par.metric.x, par.metric.y, n)dcor.dist(D1, D2)
bcdcor.dist(D1, D2, n)
dcor.test(D1, D2, n)
dcor.test returns a list with class htest containing
method description of test
statistic observed value of the test statistic
parameter degrees of freedom
estimate bias corrected distance correlation bcdcor(x,y)
p.value p-value of the t-test
data.name description of data
dcor.xy returns the previous list with class htest and
D1 the distance matrix of x
D2 the distance matrix of y
dcor.dist returns the distance correlation statistic.
bcdcor.dist returns the bias corrected distance correlation
statistic.
data (fdata, matrix or data.frame class) of first sample.
data (fdata, matrix or data.frame class) of second sample.
if TRUE, compute bias corrected distance correlation statistic and the corresponding t-test, else compute distance correlation statistic.
Name of metric or semi-metric function used for
compute the distances of x and y object respectively. By
default, metric.lp for functional data and
metric.dist for multivariate data.
List of parameters for the corresponding metric function.
The sample size used in bias corrected version of distance
correlation, by default is the number of rows of x.
Distances of first sample (x data).
Distances of second sample (y data).
Manuel Oviedo de la Fuente manuel.oviedo@udc.es and Manuel Febrero Bande
These wrapper functions extend the functions of the energy package
for multivariate data to functional data. Distance correlation is a measure
of dependence between random vectors introduced by Szekely, Rizzo, and
Bakirov (2007).
dcor.xy performs a nonparametric t-test of multivariate or functional
independence in high dimension. The distribution of the test statistic is
approximately Student t with \(n(n-3)/2-1\) degrees of freedom and for
\(n \geq 10\) the statistic is approximately distributed as standard
normal. Wrapper function of energy:::dcor.ttest. The t statistic is
a transformation of a bias corrected version of distance correlation (see SR
2013 for details). Large values (upper tail) of the t statistic are
significant.
dcor.test similar to dcor.xy but only for distance matrix.
dcor.dist compute distance correlation statistic. Wrapper function
of energy::dcor but only for distance matrix
bcdcor.dist compute bias corrected distance correlation statistic.
Wrapper function of energy:::bcdcor but only for distance matrix.
Szekely, G.J. and Rizzo, M.L. (2013). The distance correlation t-test of independence in high dimension. Journal of Multivariate Analysis, Volume 117, pp. 193-213.
Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007), Measuring and Testing Dependence by Correlation of Distances, Annals of Statistics, Vol. 35 No. 6, pp. 2769-2794.
metric.lp amd metric.dist.
if (FALSE) {
x<-rproc2fdata(100,1:50)
y<-rproc2fdata(100,1:50)
dcor.xy(x, y,test=TRUE)
dx <- metric.lp(x)
dy <- metric.lp(y)
dcor.test(dx, dy)
bcdcor.dist(dx, dy)
dcor.xy(x, y,test=FALSE)
dcor.dist(dx, dy)
}
Run the code above in your browser using DataLab