##
## example from help('lm')
##
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
fRegress.D9 <- fRegress(weight ~ group)
resid.fR.D9 <- resid(fRegress.D9)
# Now compare with 'lm'
lm.D9 <- lm(weight ~ group)
resid.lm.D9 <- resid(lm.D9)
stopifnot(
all.equal(as.vector(resid.fR.D9), as.vector(resid.lm.D9))
)
##
## resid from knee angle prediciton from hip angle;
##
(gaittime <- as.numeric(dimnames(gait)[[1]])*20)
gaitrange <- c(0,20)
gaitbasis <- create.fourier.basis(gaitrange, nbasis=21)
harmaccelLfd <- vec2Lfd(c(0, (2*pi/20)^2, 0), rangeval=gaitrange)
gaitfd <- smooth.basisPar(gaittime, gait,
gaitbasis, Lfdobj=harmaccelLfd, lambda=1e-2)$fd
hipfd <- gaitfd[,1]
kneefd <- gaitfd[,2]
knee.hip.f <- fRegress(kneefd ~ hipfd)
#knee.hip.e <- resid(knee.hip.f)
#plot(knee.hip.e)
Run the code above in your browser using DataLab