Carries out a functional PCA with regularization from the estimate of the covariance surface
pcaPACE(covestimate, nharm, harmfdPar, cross)a list with the two named entries "cov.estimate" and "meanfd"
the number of harmonics or principal components to compute.
a functional parameter object that defines the harmonic or principal component functions to be estimated.
a logical value: if TRUE, take into account the cross covariance for estimating the eigen functions.
an object of class "pca.fd" with these named entries:
a functional data object for the harmonics or eigenfunctions
the complete set of eigenvalues
NULL. Use "scoresPACE" for estimating the pca scores
a vector giving the proportion of variance explained by each eigenfunction
a functional data object giving the mean function