Learn R Programming

fda (version 5.1.4)

predict.fRegress: Predict method for Functional Regression

Description

Model predictions for object of class fRegress.

Usage

# S3 method for fRegress
predict(object, newdata=NULL, se.fit = FALSE,
     interval = c("none", "confidence", "prediction"),
     level = 0.95, ...)

Arguments

object

Object of class inheriting from lmWinsor

newdata

Either NULL or a list matching object\$xfdlist.

If(is.null(newdata)) predictions <- object\$yhatfdobj

If newdata is a list, predictions = the sum of either newdata[i] * betaestfdlist[i] if object\$yfdobj has class fd or inprod( newdata[i], betaestfdlist[i]) if class(object\$yfdobj) = numeric.

se.fit

a switch indicating if standard errors of predictions are required

interval

type of prediction (response or model term)

level

Tolerance/confidence level

additional arguments for other methods

Value

The predictions produced by predict.fRegress are either a vector or a functional parameter (class fdPar) object, matching the class of object\$y.

If interval is not "none", the predictions will be multivariate for object\$y and the requested lwr and upr bounds. If object\$y is a scalar, these predictions are returned as a matrix; otherwise, they are a multivariate functional parameter object (class fdPar).

If se.fit is TRUE, predict.fRegress returns a list with the following components:

fit

vector or matrix or univariate or multivariate functional parameter object depending on the value of interval and the class of object\$y.

se.fit

standard error of predicted means

Details

1. Without newdata, fit <- object\$yhatfdobj.

2. With newdata, if(class(object\$y) == 'numeric'), fit <- sum over i of inprod(betaestlist[i], newdata[i]). Otherwise, fit <- sum over i of betaestlist[i] * newdata[i].

3. If(se.fit | (interval != 'none')) compute se.fit, then return whatever is desired.

See Also

fRegress predict