Smooth data already converted to a functional data object, fdobj, using directly specified criteria.
smooth.fdPar(fdobj, Lfdobj=NULL, lambda=1e-4,
estimate=TRUE, penmat=NULL)
a functional data object to be smoothed.
either a nonnegative integer or a linear differential operator object.
If NULL
, Lfdobj depends on fdobj[['basis']][['type']]:
bspline Lfdobj <- int2Lfd(max(0, norder-2)), where norder = norder(fdobj).
fourier Lfdobj = a harmonic acceleration operator:
Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rng))^2,0), rng)
where rng = fdobj[['basis']][['rangeval']].
anything elseLfdobj <- int2Lfd(0)
a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter.
a logical value: if TRUE
, the functional parameter is
estimated, otherwise, it is held fixed.
a roughness penalty matrix. Including this can eliminate the need to compute this matrix over and over again in some types of calculations.
a functional data object.
1. fdPar
2. smooth.fd
Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
# NOT RUN {
# see smooth.basis
# }
Run the code above in your browser using DataLab