##
## Simplest possible example: constant function
##
# 1 basis, order 1 = degree 0 = constant function
b1.1 <- create.bspline.basis(nbasis=1, norder=1)
# data values: 1 and 2, with a mean of 1.5
y12 <- 1:2
# smooth data, giving a constant function with value 1.5
fd1.1 <- Data2fd(y12, basisobj=b1.1)
oldpar <- par(no.readonly=TRUE)
plot(fd1.1)
# now repeat the analysis with some smoothing, which moves the
# toward 0.
fd1.5 <- Data2fd(y12, basisobj=b1.1, lambda=0.5)
# values of the smooth:
# fd1.1 = sum(y12)/(n+lambda*integral(over arg=0 to 1 of 1))
# = 3 / (2+0.5) = 1.2
#. JR ... Data2fd returns an fdsmooth object and a member of the
# is an fd smooth object. Calls to functions expecting
# an fd object require attaching $fd to the fdsmooth object
# this is required in lines 268, 311 and 337
eval.fd(seq(0, 1, .2), fd1.5)
##
## step function smoothing
##
# 2 step basis functions: order 1 = degree 0 = step functions
b1.2 <- create.bspline.basis(nbasis=2, norder=1)
# fit the data without smoothing
fd1.2 <- Data2fd(1:2, basisobj=b1.2)
# plot the result: A step function: 1 to 0.5, then 2
op <- par(mfrow=c(2,1))
plot(b1.2, main='bases')
plot(fd1.2, main='fit')
par(op)
##
## Simple oversmoothing
##
# 3 step basis functions: order 1 = degree 0 = step functions
b1.3 <- create.bspline.basis(nbasis=3, norder=1)
# smooth the data with smoothing
fd1.3 <- Data2fd(y12, basisobj=b1.3, lambda=0.5)
# plot the fit along with the points
plot(0:1, c(0, 2), type='n')
points(0:1, y12)
lines(fd1.3)
# Fit = penalized least squares with penalty =
# = lambda * integral(0:1 of basis^2),
# which shrinks the points towards 0.
# X1.3 = matrix(c(1,0, 0,0, 0,1), 2)
# XtX = crossprod(X1.3) = diag(c(1, 0, 1))
# penmat = diag(3)/3
# = 3x3 matrix of integral(over arg=0:1 of basis[i]*basis[j])
# Xt.y = crossprod(X1.3, y12) = c(1, 0, 2)
# XtX + lambda*penmat = diag(c(7, 1, 7)/6
# so coef(fd1.3.5) = solve(XtX + lambda*penmat, Xt.y)
# = c(6/7, 0, 12/7)
##
## linear spline fit
##
# 3 bases, order 2 = degree 1
b2.3 <- create.bspline.basis(norder=2, breaks=c(0, .5, 1))
# interpolate the values 0, 2, 1
fd2.3 <- Data2fd(c(0,2,1), basisobj=b2.3, lambda=0)
# display the coefficients
round(fd2.3$coefs, 4)
# plot the results
op <- par(mfrow=c(2,1))
plot(b2.3, main='bases')
plot(fd2.3, main='fit')
par(op)
# apply some smoothing
fd2.3. <- Data2fd(c(0,2,1), basisobj=b2.3, lambda=1)
op <- par(mfrow=c(2,1))
plot(b2.3, main='bases')
plot(fd2.3., main='fit', ylim=c(0,2))
par(op)
all.equal(
unclass(fd2.3)[-1],
unclass(fd2.3.)[-1])
##** CONCLUSION:
##** The only differences between fd2.3 and fd2.3.
##** are the coefficients, as we would expect.
##
## quadratic spline fit
##
# 4 bases, order 3 = degree 2 = continuous, bounded, locally quadratic
b3.4 <- create.bspline.basis(norder=3, breaks=c(0, .5, 1))
# fit values c(0,4,2,3) without interpolation
fd3.4 <- Data2fd(c(0,4,2,3), basisobj=b3.4, lambda=0)
round(fd3.4$coefs, 4)
op <- par(mfrow=c(2,1))
plot(b3.4)
plot(fd3.4)
points(c(0,1/3,2/3,1), c(0,4,2,3))
par(op)
# try smoothing
fd3.4. <- Data2fd(c(0,4,2,3), basisobj=b3.4, lambda=1)
round(fd3.4.$coef, 4)
op <- par(mfrow=c(2,1))
plot(b3.4)
plot(fd3.4., ylim=c(0,4))
points(seq(0,1,len=4), c(0,4,2,3))
par(op)
##
## Two simple Fourier examples
##
gaitbasis3 <- create.fourier.basis(nbasis=5)
gaitfd3 <- Data2fd(seq(0,1,len=20), gait, basisobj=gaitbasis3)
# plotfit.fd(gait, seq(0,1,len=20), gaitfd3)
# set up the fourier basis
daybasis <- create.fourier.basis(c(0, 365), nbasis=65)
# Make temperature fd object
# Temperature data are in 12 by 365 matrix tempav
# See analyses of weather data.
tempfd <- Data2fd(CanadianWeather$dailyAv[,,"Temperature.C"],
day.5, daybasis)
# plot the temperature curves
par(mfrow=c(1,1))
plot(tempfd)
##
## argvals of class Date and POSIXct
##
# These classes of time can generate very large numbers when converted to
# numeric vectors. For basis systems such as polynomials or splines,
# severe rounding error issues can arise if the time interval for the
# data is very large. To offset this, it is best to normalize the
# numeric version of the data before analyzing them.
# Date class time unit is one day, divide by 365.25.
invasion1 <- as.Date('1775-09-04')
invasion2 <- as.Date('1812-07-12')
earlyUS.Canada <- as.numeric(c(invasion1, invasion2))/365.25
BspInvasion <- create.bspline.basis(earlyUS.Canada)
earlyYears <- seq(invasion1, invasion2, length.out=7)
earlyQuad <- (as.numeric(earlyYears-invasion1)/365.25)^2
earlyYears <- as.numeric(earlyYears)/365.25
fitQuad <- Data2fd(earlyYears, earlyQuad, BspInvasion)
# POSIXct: time unit is one second, divide by 365.25*24*60*60
rescale <- 365.25*24*60*60
AmRev.ct <- as.POSIXct1970(c('1776-07-04', '1789-04-30'))
BspRev.ct <- create.bspline.basis(as.numeric(AmRev.ct)/rescale)
AmRevYrs.ct <- seq(AmRev.ct[1], AmRev.ct[2], length.out=14)
AmRevLin.ct <- as.numeric(AmRevYrs.ct-AmRev.ct[1])
AmRevYrs.ct <- as.numeric(AmRevYrs.ct)/rescale
AmRevLin.ct <- as.numeric(AmRevLin.ct)/rescale
fitLin.ct <- Data2fd(AmRevYrs.ct, AmRevLin.ct, BspRev.ct)
par(oldpar)
Run the code above in your browser using DataLab