Learn R Programming

fda (version 6.2.0)

pda.overlay: Stability Analysis for Principle Differential Analysis

Description

Overlays the results of a univariate, second-order principal differential analysis on a bifurcation diagram to demonstrate stability.

Usage

pda.overlay(pdaList,nfine=501,ncoarse=11,...)

Value

None.

Arguments

pdaList

a list object returned by pda.fd.

nfine

number of plotting points to use.

ncoarse

number of time markers to place along the plotted curve.

...

other arguments for 'plot'.

Details

Overlays a bivariate plot of the functional parameters in a univariate second-order principal differential analysis on a bifurcation diagram.

References

Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.

See Also

pda.fd plot.pda.fd eigen.pda

Examples

Run this code
oldpar <- par(no.readonly=TRUE)
# This example looks at a principal differential analysis of the lip data
# in Ramsay and Silverman (2005).

# First smooth the data

lipfd <- smooth.basisPar(liptime, lip, 6, Lfdobj=int2Lfd(4),
                         lambda=1e-12)$fd
names(lipfd$fdnames) <- c("time(seconds)", "replications", "mm")

# Now we'll set up functional parameter objects for the beta coefficients.

lipbasis <- lipfd$basis
lipfd0   <- fd(matrix(0,lipbasis$nbasis,1),lipbasis)
lipfdPar <- fdPar(lipfd0,2,0)
bwtlist  <- list(lipfdPar,lipfdPar)
xfdlist  <- list(lipfd)

# Call pda

pdaList <- pda.fd(xfdlist, bwtlist)

# And plot the overlay

pda.overlay(pdaList,lwd=2,cex.lab=1.5,cex.axis=1.5)
par(oldpar)

Run the code above in your browser using DataLab