Smooth data already converted to a functional data object, fdobj, using directly specified criteria.
smooth.fdPar(fdobj, Lfdobj=NULL, lambda=1e-4,
estimate=TRUE, penmat=NULL)
a functional data object.
a functional data object to be smoothed.
either a nonnegative integer or a linear differential operator object.
If NULL
, Lfdobj depends on fdobj[['basis']][['type']]:
Lfdobj <- int2Lfd(max(0, norder-2)), where norder = norder(fdobj).
Lfdobj = a harmonic acceleration operator:
Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rng))^2,0), rng)
where rng = fdobj[['basis']][['rangeval']].
Lfdobj <- int2Lfd(0)
a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter.
a logical value: if TRUE
, the functional parameter is
estimated, otherwise, it is held fixed.
a roughness penalty matrix. Including this can eliminate the need to compute this matrix over and over again in some types of calculations.
1. fdPar
2. smooth.fd
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
smooth.fd
,
fdPar
,
smooth.basis
,
smooth.pos
,
smooth.morph