For a Gaussian process, create a dense functional data sample of size n over a [0,1] support.
MakeGPFunctionalData(
n,
M = 100,
mu = rep(0, M),
K = 2,
lambda = rep(1, K),
sigma = 0,
basisType = "cos"
)
A list containing the following fields:
A vector of noiseless observations.
A vector of noisy observations if sigma
> 0.
number of samples to generate
number of equidistant readings per sample (default: 100)
vector of size M specifying the mean (default: rep(0,M))
scalar specifying the number of basis to be used (default: 2)
vector of size K specifying the variance of each components (default: rep(1,K))
The standard deviation of the Gaussian noise added to each observation points.
string specifying the basis type used; possible options are: 'sin', 'cos' and 'fourier' (default: 'cos') (See code of 'CreateBasis' for implementation details.)