powered by
This function builds a classification model using Random Forest
RANDOMFOREST( train, labels, ntree = 500, nvar = if (!is.null(labels) && !is.factor(labels)) max(floor(ncol(train)/3), 1) else floor(sqrt(ncol(train))), tune = FALSE, ... )
The training set (description), as a data.frame.
data.frame
Class labels of the training set (vector or factor).
vector
factor
The number of trees in the forest.
Number of variables randomly sampled as candidates at each split.
If true, the function returns paramters instead of a classification model.
Other parameters.
The classification model.
randomForest
# NOT RUN { require (datasets) data (iris) RANDOMFOREST (iris [, -5], iris [, 5]) # }
Run the code above in your browser using DataLab