Learn R Programming

fdm2id (version 0.9.5)

evaluation: Evaluation of classification or regression predictions

Description

Evaluation predictions of a classification or a regression model.

Usage

evaluation(
  predictions,
  gt,
  eval = ifelse(is.factor(gt), "accuracy", "r2"),
  ...
)

Arguments

predictions

The predictions of a classification model (factor or vector).

gt

The ground truth of the dataset (factor or vector).

eval

The evaluation method.

...

Other parameters.

Value

The evaluation of the predictions (numeric value).

See Also

confusion, evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.precision, evaluation.recall, evaluation.msep, evaluation.r2, performance

Examples

Run this code
# NOT RUN {
require (datasets)
data (iris)
d = splitdata (iris, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
# Default evaluation for classification
evaluation (pred.nb, d$test.y)
# Evaluation with two criteria
evaluation (pred.nb, d$test.y, eval = c ("accuracy", "kappa"))
data (trees)
d = splitdata (trees, 3)
model.linreg = LINREG (d$train.x, d$train.y)
pred.linreg = predict (model.linreg, d$test.x)
# Default evaluation for regression
evaluation (pred.linreg, d$test.y)
# }

Run the code above in your browser using DataLab