# NOT RUN {
require (datasets)
data (iris)
# Without classification
plotdata (iris [, -5]) # D<U+00E9>fault (pairs)
# With classification
plotdata (iris [, -5], iris [, 5]) # D<U+00E9>fault (pairs)
plotdata (iris, 5) # Column number
plotdata (iris) # Automatic detection of the classification (if only one factor column)
plotdata (iris, type = "scatter") # Scatter plot (PCA axis)
plotdata (iris, type = "parallel") # Parallel coordinates
plotdata (iris, type = "boxplot") # Boxplot
plotdata (iris, type = "histogram") # Histograms
plotdata (iris, type = "heatmap") # Heatmap
plotdata (iris, type = "heatmapc") # Heatmap (and hierarchalcal clustering)
plotdata (iris, type = "pca") # Scatter plot (PCA axis)
plotdata (iris, type = "cda") # Scatter plot (CDA axis)
plotdata (iris, type = "svd") # Scatter plot (SVD axis)
plotdata (iris, type = "som") # Kohonen map
# With only one variable
plotdata (iris [, 1], iris [, 5]) # D<U+00E9>fault (data vs. index)
plotdata (iris [, 1], iris [, 5], type = "scatter") # Scatter plot (data vs. index)
plotdata (iris [, 1], iris [, 5], type = "boxplot") # Boxplot
# With two variables
plotdata (iris [, 3:4], iris [, 5]) # D<U+00E9>fault (scatter plot)
plotdata (iris [, 3:4], iris [, 5], type = "scatter") # Scatter plot
data (titanic)
plotdata (titanic, type = "barplot") # Barplots
plotdata (titanic, type = "pie") # Pie charts
# }
Run the code above in your browser using DataLab