Learn R Programming

fdm2id (version 0.9.6)

APRIORI: Classification using APRIORI

Description

This function builds a classification model using the association rules method APRIORI.

Usage

APRIORI(
  train,
  labels,
  supp = 0.05,
  conf = 0.8,
  prune = FALSE,
  tune = FALSE,
  ...
)

Value

The classification model, as an object of class apriori.

Arguments

train

The training set (description), as a data.frame.

labels

Class labels of the training set (vector or factor).

supp

The minimal support of an item set (numeric value).

conf

The minimal confidence of an item set (numeric value).

prune

A logical indicating whether to prune redundant rules or not (default: FALSE).

tune

If true, the function returns paramters instead of a classification model.

...

Other parameters.

See Also

predict.apriori, apriori-class, apriori

Examples

Run this code
require ("datasets")
data (iris)
d = discretizeDF (iris,
    default = list (method = "interval", breaks = 3, labels = c ("small", "medium", "large")))
APRIORI (d [, -5], d [, 5], supp = .1, conf = .9, prune = TRUE)

Run the code above in your browser using DataLab