powered by
This function builds a classification model using Multilayer Perceptron.
MLP( train, labels, hidden = ifelse(is.vector(train), 2:(1 + nlevels(labels)), 2:(ncol(train) + nlevels(labels))), decay = 10^(-3:-1), methodparameters = NULL, tune = FALSE, ... )
The classification model.
The training set (description), as a data.frame.
data.frame
Class labels of the training set (vector or factor).
vector
factor
The size of the hidden layer (if a vector, cross-over validation is used to chose the best size).
The decay (between 0 and 1) of the backpropagation algorithm (if a vector, cross-over validation is used to chose the best size).
Object containing the parameters. If given, it replaces size and decay.
size
decay
If true, the function returns paramters instead of a classification model.
Other parameters.
nnet
if (FALSE) { require (datasets) data (iris) MLP (iris [, -5], iris [, 5], hidden = 4, decay = .1) }
Run the code above in your browser using DataLab