Learn R Programming

fdm2id (version 0.9.6)

evaluation.precision: Precision of classification predictions

Description

Evaluation predictions of a classification model according to precision. Works only for two classes problems.

Usage

evaluation.precision(predictions, targets, positive = levels(targets)[1], ...)

Value

The evaluation of the predictions (numeric value).

Arguments

predictions

The predictions of a classification model (factor or vector).

targets

Actual targets of the dataset (factor or vector).

positive

The label of the positive class.

...

Other parameters.

See Also

evaluation.accuracy, evaluation.fmeasure, evaluation.fowlkesmallows, evaluation.goodness, evaluation.jaccard, evaluation.kappa, evaluation.recall,evaluation

Examples

Run this code
require (datasets)
data (iris)
d = iris
levels (d [, 5]) = c ("+", "+", "-") # Building a two classes dataset
d = splitdata (d, 5)
model.nb = NB (d$train.x, d$train.y)
pred.nb = predict (model.nb, d$test.x)
evaluation.precision (pred.nb, d$test.y)

Run the code above in your browser using DataLab