Learn R Programming

fdm2id (version 0.9.6)

intern: Clustering evaluation through internal criteria

Description

Evaluation a clustering algorithm according to internal criteria.

Usage

intern(clus, d, eval = "intraclass", type = c("global", "cluster"))

Value

The evaluation of the clustering.

Arguments

clus

The extracted clusters.

d

The dataset.

eval

The evaluation criteria.

type

Indicates whether a "global" or a "cluster"-wise evaluation should be used.

See Also

compare, stability, intern.dunn, intern.interclass, intern.intraclass

Examples

Run this code
require (datasets)
data (iris)
km = KMEANS (iris [, -5], k = 3)
intern (km$clus, iris [, -5])
intern (km$clus, iris [, -5], type = "cluster")
intern (km$clus, iris [, -5], eval = c ("intraclass", "interclass"))
intern (km$clus, iris [, -5], eval = c ("intraclass", "interclass"), type = "cluster")

Run the code above in your browser using DataLab