powered by
Ensemble learning, through AdaBoost Algorithm.
ADABOOST( x, y, learningmethod, nsamples = 100, fuzzy = FALSE, tune = FALSE, seed = NULL, ... )
The classification model.
The dataset (description/predictors), a matrix or data.frame.
matrix
data.frame
The target (class labels or numeric values), a factor or vector.
factor
vector
The boosted method.
The number of samplings.
Indicates whether or not fuzzy classification should be used or not.
If true, the function returns paramters instead of a classification model.
A specified seed for random number generation.
Other specific parameters for the leaning method.
BAGGING, predict.boosting
BAGGING
predict.boosting
if (FALSE) { require (datasets) data (iris) ADABOOST (iris [, -5], iris [, 5], NB) }
Run the code above in your browser using DataLab