powered by
This function builds a regression model using Support Vector Machine with a radial kernel.
SVRr( x, y, gamma = 2^(-3:3), cost = 2^(-3:3), epsilon = c(0.1, 0.5, 1), params = NULL, tune = FALSE, ... )
The classification model.
Predictor matrix.
matrix
Response vector.
vector
The gamma parameter (if a vector, cross-over validation is used to chose the best size).
The cost parameter (if a vector, cross-over validation is used to chose the best size).
The epsilon parameter (if a vector, cross-over validation is used to chose the best size).
Object containing the parameters. If given, it replaces epsilon, gamma and cost.
epsilon
gamma
cost
If true, the function returns paramters instead of a classification model.
Other arguments.
svm, SVR
svm
SVR
if (FALSE) { require (datasets) data (trees) SVRr (trees [, -3], trees [, 3], gamma = 1, cost = 1) }
Run the code above in your browser using DataLab