if (FALSE) {
require ("datasets")
data (iris)
# One method, one evaluation criterion, bootstrap estimation
performance (NB, iris [, -5], iris [, 5], seed = 0)
# One method, two evaluation criteria, train set estimation
performance (NB, iris [, -5], iris [, 5], eval = c ("accuracy", "kappa"),
protocol = "train", seed = 0)
# Three methods, ROC curves, LOOCV estimation
performance (c (NB, LDA, LR), linsep [, -3], linsep [, 3], type = "roc",
protocol = "loocv", seed = 0)
# List of methods in a variable, confusion matrix, hodout estimation
classif = c (NB, LDA, LR)
performance (classif, iris [, -5], iris [, 5], type = "confusion",
protocol = "holdout", seed = 0, names = c ("NB", "LDA", "LR"))
# List of strings (method names), scatterplot evaluation, crossvalidation estimation
classif = c ("NB", "LDA", "LR")
performance (classif, iris [, -5], iris [, 5], type = "scatter",
protocol = "crossvalidation", seed = 0)
# Actual vs. predicted
data (trees)
performance (LINREG, trees [, -3], trees [, 3], type = "avsp")
}
Run the code above in your browser using DataLab