Lambda Array of dimension (D-1) x Q x n_samples (posterior samples)
Sigma Array of dimension (D-1) x (D-1) x n_samples (posterior samples)
Arguments
Y
matrix of dimension D x N
X
matrix of covariates of dimension Q x N
Theta
matrix of prior mean of dimension D x Q
Gamma
covariance matrix of dimension Q x Q
Xi
covariance matrix of dimension D x D
upsilon
scalar (must be > D-1) degrees of freedom for InvWishart prior
n_samples
number of samples to draw (default: 2000)
Details
$$Y ~ MN_{D-1 x N}(Lambda*X, Sigma, I_N)$$
$$Lambda ~ MN_{D-1 x Q}(Theta, Sigma, Gamma)$$
$$Sigma ~ InvWish(upsilon, Xi)$$
This function provides a means of sampling from the posterior distribution of
Lambda and Sigma.