Lambda Array of dimension D x Q x n_samples (posterior samples)
Sigma Array of dimension D x D x n_samples (posterior samples)
Arguments
Y
matrix of dimension D x N
X
matrix of covariates of dimension Q x N
Theta
matrix of prior mean of dimension D x Q
Gamma
covariance matrix of dimension Q x Q
Xi
covariance matrix of dimension D x D
upsilon
scalar (must be > D) degrees of freedom for InvWishart prior
n_samples
number of samples to draw (default: 2000)
Details
$$Y \sim MN_{D \times N}(\Lambda \mathbf{X}, \Sigma, I_N)$$
$$\Lambda \sim MN_{D \times Q}(\Theta, \Sigma, \Gamma)$$
$$\Sigma \sim InvWish(\upsilon, \Xi)$$
This function provides a means of sampling from the posterior distribution of
Lambda and Sigma.