
See details for model. Should likely be called following
optimPibbleCollapsed
. Notation: N
is number of samples,
D
is number of multinomial categories, Q
is number
of covariates, iter
is the number of samples of eta
(e.g.,
the parameter n_samples
in the function optimPibbleCollapsed
)
uncollapsePibble(
eta,
X,
Theta,
Gamma,
Xi,
upsilon,
seed,
ret_mean = FALSE,
ncores = -1L
)
List with components
Lambda Array of dimension (D-1) x Q x iter (posterior samples)
Sigma Array of dimension (D-1) x (D-1) x iter (posterior samples)
The number of cores used
Timer
array of dimension (D-1) x N x iter (e.g., Pars
output of
function optimPibbleCollapsed)
matrix of covariates of dimension Q x N
matrix of prior mean of dimension (D-1) x Q
covariance matrix of dimension Q x Q
covariance matrix of dimension (D-1) x (D-1)
scalar (must be > D) degrees of freedom for InvWishart prior
seed to use for random number generation
if true then uses posterior mean of Lambda and Sigma corresponding to each sample of eta rather than sampling from posterior of Lambda and Sigma (useful if Laplace approximation is not used (or fails) in optimPibbleCollapsed)
(default:-1) number of cores to use, if ncores==-1 then uses default from OpenMP typically to use all available cores.
Notation: Let
The uncollapsed model (Full pibble model) is given by:
Lambda
and Sigma
given posterior samples of Eta
from
the collapsed model.
JD Silverman K Roche, ZC Holmes, LA David, S Mukherjee. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. 2019, arXiv e-prints, arXiv:1903.11695
optimPibbleCollapsed
sim <- pibble_sim()
# Fit model for eta
fit <- optimPibbleCollapsed(sim$Y, sim$upsilon, sim$Theta%*%sim$X, sim$KInv,
sim$AInv, random_pibble_init(sim$Y))
# Finally obtain samples from Lambda and Sigma
fit2 <- uncollapsePibble(fit$Samples, sim$X, sim$Theta,
sim$Gamma, sim$Xi, sim$upsilon,
seed=2849)
Run the code above in your browser using DataLab