See details for model. Should likely be called following
optimPibbleCollapsed
. Notation: N
is number of samples,
D
is number of multinomial categories, Q
is number
of covariates, iter
is the number of samples of eta
(e.g.,
the parameter n_samples
in the function optimPibbleCollapsed
)
uncollapsePibble_sigmaKnown(
eta,
X,
Theta,
Gamma,
GammaComb,
Xi,
sigma,
upsilon,
seed,
ret_mean = FALSE,
linear = FALSE,
ncores = -1L
)
List with components
Lambda Array of dimension (D-1) x Q x iter (posterior samples)
Sigma Array of dimension (D-1) x (D-1) x iter (posterior samples)
The number of cores used
Timer
array of dimension (D-1) x N x iter (e.g., Pars
output of
function optimPibbleCollapsed)
matrix of covariates of dimension Q x N
matrix of prior mean of dimension (D-1) x Q
covariance matrix of dimension Q x Q
summed covariance matrix across additive components of dimension Q x Q.
covariance matrix of dimension (D-1) x (D-1)
known covariance matrix of dimension (D-1) x (D-1) x iter
scalar (must be > D) degrees of freedom for InvWishart prior
seed to use for random number generation
if true then uses posterior mean of Lambda and Sigma corresponding to each sample of eta rather than sampling from posterior of Lambda and Sigma (useful if Laplace approximation is not used (or fails) in optimPibbleCollapsed)
Boolean. Is this for a linear parameter?
(default:-1) number of cores to use, if ncores==-1 then uses default from OpenMP typically to use all available cores.
Notation: Let \(Z_j\) denote the J-th row of a matrix Z. While the collapsed model is given by: $$Y_j \sim Multinomial(\pi_j)$$ $$\pi_j = \Phi^{-1}(\eta_j)$$ $$\eta \sim T_{D-1, N}(\upsilon, \Theta X, K, A)$$ Where \(A = I_N + X \Gamma X'\), \(K = \Xi\) is a (D-1)x(D-1) covariance matrix, \(\Gamma\) is a Q x Q covariance matrix, and \(\Phi^{-1}\) is ALRInv_D transform.
The uncollapsed model (Full pibble model) is given by:
$$Y_j \sim Multinomial(\pi_j)$$
$$\pi_j = \Phi^{-1}(\eta_j)$$
$$\eta \sim MN_{D-1 \times N}(\Lambda X, \Sigma, I_N)$$
$$\Lambda \sim MN_{D-1 \times Q}(\Theta, \Sigma, \Gamma)$$
$$\Sigma \sim InvWish(\upsilon, \Xi)$$
This function provides a means of sampling from the posterior distribution of
Lambda
and Sigma
given posterior samples of Eta
from
the collapsed model.
JD Silverman K Roche, ZC Holmes, LA David, S Mukherjee. Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes. 2019, arXiv e-prints, arXiv:1903.11695
optimPibbleCollapsed