if (FALSE) {
data(CO2)
#
# A quick look at the observations with world map
quilt.plot( CO2$lon.lat, CO2$y)
world( add=TRUE)
# Note high concentrations in Borneo (biomass burning), Amazonia and
# ... Michigan (???).
# spatial smoothing using the wendland compactly supported covariance
# see help( fastTps) for details
# First smooth using locations and Euclidean distances
# note taper is in units of degrees
out<-fastTps( CO2$lon.lat, CO2$y, aRange=4, lambda=2.0)
#summary of fit note about 7300 degrees of freedom
# associated with fitted surface
print( out)
# image plot on a grid (this takes a while)
surface( out, type="I", nx=300, ny=150)
# smooth with respect to great circle distance
out2<-fastTps( CO2$lon.lat, CO2$y, lon.lat=TRUE,lambda=1.5, aRange=4*68)
print(out2)
#surface( out2, type="I", nx=300, ny=150)
# these data are actually subsampled from a grid.
# create the image object that holds the data
#
temp<- matrix( NA, ncol=ncol(CO2.true$z), nrow=nrow(CO2.true$z))
temp[ CO2.true$mask] <- CO2$y
# look at gridded object.
image.plot(CO2.true$x,CO2.true$y, temp)
# to predict _exactly_ on this grid for the second fit;
# (this takes a while)
look<- predictSurface( out2, list( x=CO2.true$x, y=CO2.true$y) )
image.plot(look)
}
Run the code above in your browser using DataLab