Learn R Programming

fitODBOD (version 1.5.3)

pTriBin: Triangular Binomial Distribution

Description

These functions provide the ability for generating probability function values and cumulative probability function values for the Triangular Binomial distribution.

Usage

pTriBin(x,n,mode)

Value

The output of pTriBin gives cumulative probability function values in vector form.

Arguments

x

vector of binomial random variables

n

single value for no of binomial trials

mode

single value for mode

Details

Mixing unit bounded Triangular distribution with Binomial distribution will create Triangular Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

$$P_{TriBin}(x)= 2 {n \choose x}(c^{-1}B_c(x+2,n-x+1)+(1-c)^{-1}B(x+1,n-x+2)-(1-c)^{-1}B_c(x+1,n-x+2))$$ $$0 < mode=c < 1$$ $$x = 0,1,2,...n$$ $$n = 1,2,3...$$

The mean, variance and over dispersion are denoted as $$E_{TriiBin}[x]= \frac{n(1+c)}{3} $$ $$Var_{TriBin}[x]= \frac{n(n+3)}{18}-\frac{n(n-3)c(1-c)}{18} $$ $$over dispersion= \frac{(1-c+c^2)}{2(2+c-c^2)} $$

Defined as \(B_c(a,b)=\int^c_0 t^{a-1} (1-t)^{b-1} \,dt\) is incomplete beta integrals and \(B(a,b)\) is the beta function.

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

References

horsnell1957economicalfitODBOD karlis2008polygonalfitODBOD okagbue2014usingfitODBOD

Examples

Run this code
#plotting the random variables and probability values
col <- rainbow(7)
x <- seq(0.1,0.7,by=0.1)
plot(0,0,main="Triangular binomial probability function graph",xlab="Binomial random variable",
ylab="Probability function values",xlim = c(0,10),ylim = c(0,.3))
for (i in 1:7)
{
lines(0:10,dTriBin(0:10,10,x[i])$pdf,col = col[i],lwd=2.85)
points(0:10,dTriBin(0:10,10,x[i])$pdf,col = col[i],pch=16)
}

dTriBin(0:10,10,.4)$pdf        #extracting the pdf values
dTriBin(0:10,10,.4)$mean       #extracting the mean
dTriBin(0:10,10,.4)$var        #extracting the variance
dTriBin(0:10,10,.4)$over.dis.para  #extracting the over dispersion value

#plotting the random variables and cumulative probability values
col <- rainbow(7)
x <- seq(0.1,0.7,by=0.1)
plot(0,0,main="Triangular binomial probability function graph",xlab="Binomial random variable",
ylab="Probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:7)
{
lines(0:10,pTriBin(0:10,10,x[i]),col = col[i],lwd=2.85)
points(0:10,pTriBin(0:10,10,x[i]),col = col[i],pch=16)
}

pTriBin(0:10,10,.4)    #acquiring the cumulative probability values

Run the code above in your browser using DataLab