# (1) basic fit of a normal distribution
#
set.seed(1234)
x1 <- rnorm(n=100)
qmedist(x1, "norm", probs=c(1/3, 2/3))
# (2) defining your own distribution functions, here for the Gumbel
# distribution for other distributions, see the CRAN task view dedicated
# to probability distributions
dgumbel <- function(x, a, b) 1/b*exp((a-x)/b)*exp(-exp((a-x)/b))
qgumbel <- function(p, a, b) a - b*log(-log(p))
qmedist(x1, "gumbel", probs=c(1/3, 2/3), start=list(a=10,b=5))
# (3) fit a discrete distribution (Poisson)
#
set.seed(1234)
x2 <- rpois(n=30,lambda = 2)
qmedist(x2, "pois", probs=1/2)
# (4) fit a finite-support distribution (beta)
#
set.seed(1234)
x3 <- rbeta(n=100,shape1=5, shape2=10)
qmedist(x3, "beta", probs=c(1/3, 2/3))
# (5) fit frequency distributions on USArrests dataset.
#
x4 <- USArrests$Assault
qmedist(x4, "pois", probs=1/2)
qmedist(x4, "nbinom", probs=c(1/3, 2/3))
Run the code above in your browser using DataLab