cwm(formulaY, familyY=gaussian, data,link, Xnorm=NULL, modelXnorm=NULL, Xbin=NULL,
Xbtrials=NULL, Xpois=NULL, Xmult=NULL, k=1:3, initialization=c("random.soft",
"random.hard", "kmeans", "mclust", "manual"), start.z=NULL, seed=NULL, maxR=1,
iter.max=1000, threshold=1.0e-04, parallel=FALSE)
ICget(object, criteria)
bestmodel(object, criteria, k=NULL, modelXnorm=NULL)
modelget(object, criteria="BIC", k=NULL, modelXnorm=NULL)
## S3 method for class 'cwm':
summary(object, criteria="BIC", k=NULL, modelXnorm=NULL, concomitant=FALSE,
digits = getOption("digits")-2, ...)formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted."gaussian"with default"link=identity""poisson"with default"link=log""binomial"with defaudata.frame, list, or environment with the variables link argument in family.c("E", "V") for a single continuous covariate, and c("EII", "VII", "EEI", "VEI", "EVI", "VVI", "EEE", "VEE", "EVE", "EEV", "VVE", "Xbin. If omitted, the maximum of each column in Xbin is chosen."random.soft""random.hard""kmeans""mclust""manual"<initialization="manual".NULL, current seed is not changed. Default value is NULL.TRUE, the package parallel is used for parallel computation. When several models are estimated, computational time is reduced. The number of cores to use may be scwm object.TRUE, concomitant variables parameters are displayed. Default is FALSE"AIC", "AICc", "AICu", "AIC3", "AWE", "BIC", "CAIC", "ICL". Default value is "BIC".cwm object, which is a list of values related to the model selected. It contains:call.formula containing a symbolic description of the model fitted.data.frame with the variables needed to use formulaY.Xnorm, Xbin, Xpois, Xmult.XbtrialsXbin.posterioriterksizeclusterloglikdfpriorICconvergedTRUE if EM algorithm converged}GLModelsmodelglm" class object.}sigmafamilyY is gaussian or t}t_dffamilyY is t}nuYfamilyY is Gamma. The gamma distribution is parameterized according to McCullagh, P. and Nelder, J. 1989, p. 30}concomitant {a list with estimated concomitant variables parameters for each mixture component}normal.munormal.Sigmanormal.modelmultinomial.modelmultinomial.probspoisson.lambdabinomial.pnormal.dnorm, multinomial.dmulti, poisson.dpois, binomial.dbinXbinbestmodel, summary and print consider the models with the best information criteria in criteria, among those with k groups and modelXnorm parsimonious model. If criteria is missing, the model with best BIC is returned.
The modelget method returns a cwm object containing the best model according to a single criterion in .flexCWM-package, tourismdata("students")
str(students)
attach(students)
# mixture of Gaussian distributions
res <- cwm(Xnorm=HEIGHT, k=1:3, initialization="kmeans")
summary(res)
plot(res)
# mixture of Gaussian regressions
res2 <- cwm(HEIGHT ~ HEIGHT.F, k=1:3, initialization="mclust")
summary(res2)
plot(res2)Run the code above in your browser using DataLab