Learn R Programming

flexclust (version 1.3-4)

barplot-methods: Barplot/chart Methods in Package `flexclust'

Description

Barplot of cluster centers or other cluster statistics.

Usage

"barplot"(height, bycluster = TRUE, oneplot = TRUE, data = NULL, FUN=colMeans, main = deparse(substitute(height)), which = 1:height@k, names.arg = NULL, oma=par("oma"), col=NULL, mcol="darkred", srt=45, ...)
"barchart"(x, data, xlab="", strip.labels=NULL, strip.prefix="Cluster ", col=NULL, mcol="darkred", mlcol=mcol, which=NULL, legend=FALSE, shade=FALSE, diff=NULL, ...)

Arguments

height, x
An object of class "kcca".
bycluster
If TRUE, then each barplot shows one cluster. If FALSE, then each barplot compares all cluster for one input variable.
oneplot
If TRUE, all barplots are plotted together on one page, else each plot is on a separate page.
data
If not NULL, cluster membership is predicted for the new data and used for the plots. By default the values from the training data are used. Ignored by the barchart method.
FUN
The function to be applied to each cluster for calculating the bar heights. Only used, if data is not NULL.
which
For barplot index number of clusters for the plot, for barchart index numbers or names of variables to plot.
names.arg
A vector of names to be plotted below each bar.
main, oma, xlab, ...
Graphical parameters.
col
Vector of colors for the clusters.
mcol,mlcol
If not NULL, the value of FUN for the complete data set is plotted over each bar as a point with color mcol and a line segment starting in zero with color mlcol.
srt
Number between 0 and 90, rotation of the x-axis labels.
strip.labels
Vector of strings for the strips of the Trellis display.
strip.prefix
Prefix string for the strips of the Trellis display.
legend
If TRUE, the barchart is always plotted on the current graphics device and a legend is added to the bottom of the plot.
shade
If TRUE, only bars with large absolute or relative deviation deviation from the sample mean of the respective variables are plotted in color.
diff
A numerical vector of length two with absolute and relative deviations for shading, default is $max/4$ absolute deviation and 50% relative deviation.

References

Sara Dolnicar and Friedrich Leisch. Using graphical statistics to better understand market segmentation solutions. International Journal of Market Research, 2013, accepted for publication.

Examples

Run this code
  cl <- cclust(iris[,-5], k=3)
  barplot(cl)
  barplot(cl, bycluster=FALSE)

  ## plot the maximum instead of mean value per cluster:
  barplot(cl, bycluster=FALSE, data=iris[,-5],
          FUN=function(x) apply(x,2,max))

  ## use lattice for plotting:
  barchart(cl)
  ## automatic abbreviation of labels
  barchart(cl, scales=list(abbreviate=TRUE))
  ## origin of bars at zero
  barchart(cl, scales=list(abbreviate=TRUE), origin=0)

  ## Use manual labels. Note that the flexclust barchart orders bars
  ## from top to bottom (the default does it the other way round), hence
  ## we have to rev() the labels:
  LAB <- c("SL", "SW", "PL", "PW")
  barchart(cl, scales=list(y=list(labels=rev(LAB))), origin=0)

  ## deviation of each cluster center from the population means
  barchart(cl, origin=rev(cl@xcent), mlcol=NULL)

  ## use shading to highlight large deviations from population mean
  barchart(cl, shade=TRUE)

  ## use smaller deviation limit than default and add a legend
  barchart(cl, shade=TRUE, diff=0.2, legend=TRUE)

Run the code above in your browser using DataLab