data("Nclus", package = "flexmix")
require("MASS")
eqscplot(Nclus)
## This model is wrong (one component has a non-diagonal cov matrix)
ex1 <- flexmix(Nclus ~ 1, k = 4, model = FLXMCmvnorm())
print(ex1)
plotEll(ex1, Nclus)
## True model, wrong number of components
ex2 <- flexmix(Nclus ~ 1, k = 6, model = FLXMCmvnorm(diagonal = FALSE))
print(ex2)
plotEll(ex2, Nclus)
## Get parameters of first component
parameters(ex2, component = 1)
## Have a look at the posterior probabilies of 10 random observations
ok <- sample(1:nrow(Nclus), 10)
p <- posterior(ex2)[ok, ]
p
## The following two should be the same
max.col(p)
clusters(ex2)[ok]
# \testonly{
stopifnot(all.equal(max.col(p), clusters(ex2)[ok]))
# }
## Now try the univariate case
plot(density(Nclus[, 1]))
ex3 <- flexmix(Nclus[, 1] ~ 1, cluster = cut(Nclus[, 1], 3),
model = FLXMCnorm1())
ex3
parameters(ex3)
Run the code above in your browser using DataLab