The parameter a of the Denny model, l(t)=1/(1+a*(t/(105-t))^3+b*sqrt(exp(t/(105-t))-1)+c*(1-exp(-2*t))).
b
The parameter b of the Denny model, l(t)=1/(1+a*(t/(105-t))^3+b*sqrt(exp(t/(105-t))-1)+c*(1-exp(-2*t))).
c
The parameter c of the Denny model, l(t)=1/(1+a*(t/(105-t))^3+b*sqrt(exp(t/(105-t))-1)+c*(1-exp(-2*t))).
t
Age (vector OK) in years. The t must be less than 105, otherwise the value by Denny() become 0.
initialpar
Initial value for the parameters to be estimated. If not given, rep(0.1, 3) is used.
data
Actual vector of qx in the lifetable to be used to obtain the best-fit parameters of the Denny's model. If the ages for qx are equal or elder than 105 years old, those will be ignored in fitting.
mode
Which of lifetable functions should be used to calculate the RMSE: 1 qx, 2 dx, otherwise lx. Default is 3.
Method
The method to be used in optim() function. Default is "Nelder-Mead".
...
Other options to be passed to optim().
Value
Denny() returns model lx for the same length with t.
fitDenny() returns the numeric vector of fitted parameters a, b, and c, RMSE for those values, and the flag of convergence.
References
Denny C (1997) A model of the probability of survival from birth. Mathematical and Computer Modelling, 26: 69-78.
# NOT RUN { res <- fitDenny(,qxtolx(Jlife$qx2005M))
FLAG <- res[5]
while (FLAG>0) {
res <- fitDenny(res[1:3], qxtolx(Jlife$qx2005M))
FLAG <- res[5]
}
print(res)
# }