rwf()
returns forecasts and prediction intervals for a random walk
with drift model applied to y
. This is equivalent to an ARIMA(0,1,0)
model with an optional drift coefficient. naive()
is simply a wrapper
to rwf()
for simplicity. snaive()
returns forecasts and
prediction intervals from an ARIMA(0,0,0)(0,1,0)m model where m is the
seasonal period.
rwf(y, h = 10, drift = FALSE, level = c(80, 95), fan = FALSE,
lambda = NULL, biasadj = FALSE, x = y)naive(y, h = 10, level = c(80, 95), fan = FALSE, lambda = NULL,
biasadj = FALSE, x = y)
snaive(y, h = 2 * frequency(x), level = c(80, 95), fan = FALSE,
lambda = NULL, biasadj = FALSE, x = y)
a numeric vector or time series of class ts
Number of periods for forecasting
Logical flag. If TRUE, fits a random walk with drift model.
Confidence levels for prediction intervals.
If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.
Box-Cox transformation parameter. Ignored if NULL. Otherwise, forecasts back-transformed via an inverse Box-Cox transformation.
Use adjusted back-transformed mean for Box-Cox transformations. If TRUE, point forecasts and fitted values are mean forecast. Otherwise, these points can be considered the median of the forecast densities.
Deprecated. Included for backwards compatibility.
An object of class "forecast
".
The function summary
is used to obtain and print a summary of the
results, while the function plot
produces a plot of the forecasts and
prediction intervals.
The generic accessor functions fitted.values
and residuals
extract useful features of the value returned by naive
or
snaive
.
An object of class "forecast"
is a list containing at least the
following elements:
A list containing information about the fitted model
The name of the forecasting method as a character string
Point forecasts as a time series
Lower limits for prediction intervals
Upper limits for prediction intervals
The confidence values associated with the prediction intervals
The original time series
(either object
itself or the time series used to create the model
stored as object
).
Residuals from the fitted model. That is x minus fitted values.
Fitted values (one-step forecasts)
The random walk with drift model is $$Y_t=c + Y_{t-1} + Z_t$$ where \(Z_t\) is a normal iid error. Forecasts are
given by $$Y_n(h)=ch+Y_n$$. If there is no drift (as in
naive
), the drift parameter c=0. Forecast standard errors allow for
uncertainty in estimating the drift parameter.
The seasonal naive model is $$Y_t= Y_{t-m} + Z_t$$ where \(Z_t\) is a normal iid error.
# NOT RUN {
gold.fcast <- rwf(gold[1:60], h=50)
plot(gold.fcast)
plot(naive(gold,h=50),include=200)
plot(snaive(wineind))
# }
Run the code above in your browser using DataLab