For every \(t \in\) t
and every \(N \in\) N
the (iterated) Yule-Walker
estimates \(\hat v_{N,T}^{(p,h)}(t)\) are computed. They are defined as
$$\hat v_{N,T}^{(p,h)}(t) := e'_1 \big( e_1 \big( \hat a_{N,T}^{(p)}(t) \big)' + H \big)^h, \quad N \geq 1,$$
and
$$\hat v_{0,T}^{(p,h)}(t) := \hat v_{t,T}^{(p,h)}(t),$$
with
$$ e_1 := \left(\begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array} \right), \quad H := \left( \begin{array}{ccccc} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{array} \right)$$
and
$$ \hat a_{N,T}^{(p)}(t) := \big( \hat\Gamma_{N,T}^{(p)}(t) \big)^{-1} \hat\gamma_{N,T}^{(p)}(t),$$
where
$$\hat\Gamma_{N,T}^{(p)}(t) := \big[ \hat \gamma_{i-j;N,T}(t) \big]_{i,j = 1, \ldots, p}, \quad \hat \gamma_{N,T}^{(p)}(t) := \big( \hat \gamma_{1;N,T}(t), \ldots, \hat \gamma_{p;N,T}(t) \big)'$$
and
$$\hat \gamma_{k;N,T}(t) := \frac{1}{N} \sum_{\ell=t-N+|k|+1}^{t} X_{\ell-|k|,T} X_{\ell,T}$$
is the usual lag-\(k\) autocovariance estimator (without mean adjustment),
computed from the observations \(X_{t-N+1}, \ldots, X_{t}\).
The Durbin-Levinson Algorithm is used to successively compute the solutions to the
Yule-Walker equations (cf. Brockwell/Davis (1991), Proposition 5.2.1).
To compute the \(h\)-step ahead coefficients we use the recursive relationship
$$\hat v_{i,N,T}^{(p)}(t,h) = \hat a_{i,N,T}^{(p)}(t) \hat v_{1,N,T}^{(p,h-1)}(t) + \hat v_{i+1,N,T}^{(p,h-1)}(t) I\{i \leq p-1\},$$
(cf. Section 3.2, Step 3, in Kley et al. (2019)).