# NOT RUN {
## This example shows how to construct and read frbsPMML file of frbs model
## Even though we are using MAMDANI model, other models have the same way
##
## 1. Produce frbs model, for example: we perform Wang & Mendel's technique (WM)
##
## Input data
data(frbsData)
data.train <- frbsData$GasFurnance.dt[1 : 204, ]
data.fit <- data.train[, 1 : 2]
data.tst <- frbsData$GasFurnance.dt[205 : 292, 1 : 2]
real.val <- matrix(frbsData$GasFurnance.dt[205 : 292, 3], ncol = 1)
range.data<-matrix(c(-2.716, 2.834, 45.6, 60.5, 45.6, 60.5), nrow = 2)
## Set the method and its parameters
method.type <- "WM"
control <- list(num.labels = 15, type.mf = "GAUSSIAN", type.defuz = "WAM",
type.tnorm = "MIN", type.implication.func = "ZADEH",
name="sim-0")
## Generate fuzzy model
# }
# NOT RUN {
object <- frbs.learn(data.train, range.data, method.type, control)
# }
# NOT RUN {
## 2. Write frbsPMML file
## In this step, we provide two ways as follows.
## a. by calling frbsPMML() function directly.
## b. by calling write.frbsPMML() function.
## 2a. by calling frbsPMML(), the format will be displayed in R console
# }
# NOT RUN {
frbsPMML(object)
# }
# NOT RUN {
## 2b. by calling write.frbsPMML(), the result will be saved as a file
## in the working directory.
# }
# NOT RUN {
write.frbsPMML(object, file = "MAMDANI.GasFur")
# }
# NOT RUN {
## 3. Read frbsPMML file
# }
# NOT RUN {
object <- read.frbsPMML("MAMDANI.GasFur.frbsPMML")
# }
# NOT RUN {
## 4. Perform predicting step
# }
# NOT RUN {
res.test <- predict(object, data.tst)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab